🗨 Когда стоит рассматривать разбиение датасета вместо применения глобального преобразования
В тех случаях, когда в датасете присутствуют разные подгруппы с различными распределениями.
🔍Пример: Если есть данные о доходах из разных регионов. Один регион — с высоким уровнем доходов, другой — с низким. В совокупности распределение выглядит сильно смещённым или даже мультимодальным (несколько пиков).
В такой ситуации попытка применить глобальное преобразование (например, логарифм или Box-Cox) ко всему датасету сразу не устраняет проблему. Это всё ещё не одно распределение, а смесь разных.
✅Что делать: 📍Разбить данные на логически обоснованные подгруппы (по региону, демографии, сегменту бизнеса и т.д.). 📍Применить отдельные преобразования или даже обучить отдельные модели для каждой подгруппы. 📍При необходимости объединить результаты анализа или прогнозы обратно.
✅Что важно учитывать: 📍Разделение должно быть обосновано теоретически или доменной экспертизой. Разделение «наугад» может привести к переобучению или утечке информации. 📍Объём данных в каждой подгруппе должен быть достаточным для построения статистически надёжных моделей или трансформаций.
✅Вывод: Если данные представляют собой смешение разных источников или популяций, лучше работать с ними отдельно. Глобальные методы нормализации или преобразования могут маскировать настоящую структуру данных, а значит — вести к ошибочным выводам или неэффективным моделям.
🗨 Когда стоит рассматривать разбиение датасета вместо применения глобального преобразования
В тех случаях, когда в датасете присутствуют разные подгруппы с различными распределениями.
🔍Пример: Если есть данные о доходах из разных регионов. Один регион — с высоким уровнем доходов, другой — с низким. В совокупности распределение выглядит сильно смещённым или даже мультимодальным (несколько пиков).
В такой ситуации попытка применить глобальное преобразование (например, логарифм или Box-Cox) ко всему датасету сразу не устраняет проблему. Это всё ещё не одно распределение, а смесь разных.
✅Что делать: 📍Разбить данные на логически обоснованные подгруппы (по региону, демографии, сегменту бизнеса и т.д.). 📍Применить отдельные преобразования или даже обучить отдельные модели для каждой подгруппы. 📍При необходимости объединить результаты анализа или прогнозы обратно.
✅Что важно учитывать: 📍Разделение должно быть обосновано теоретически или доменной экспертизой. Разделение «наугад» может привести к переобучению или утечке информации. 📍Объём данных в каждой подгруппе должен быть достаточным для построения статистически надёжных моделей или трансформаций.
✅Вывод: Если данные представляют собой смешение разных источников или популяций, лучше работать с ними отдельно. Глобальные методы нормализации или преобразования могут маскировать настоящую структуру данных, а значит — вести к ошибочным выводам или неэффективным моделям.
At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?
Mr. Durov launched Telegram in late 2013 with his brother, Nikolai, just months before he was pushed out of VK, the Russian social-media platform he founded. Mr. Durov pitched his new app—funded with the proceeds from the VK sale—less as a business than as a way for people to send messages while avoiding government surveillance and censorship.
Библиотека собеса по Data Science | вопросы с собеседований from vn